Какие конденсаторы лучше для звука: виды, классификация и особенности звучания

Что такое конденсатор

Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.

Существует три вида конденсаторов:

  • Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
  • Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
  • Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).

История звукового конденсатора

Конденсатор является одним из старейших электронных компонентов. Электрические проводники были обнаружены в 1729 году. В 1745 году немецкий изобретатель Эвальд Георг фон Клейст обнаружил лейденский сосуд, который стал первым CAP. Физик Питер ван Мюссенбрук — физик из Лейденского университета открыл лейденскую банку самостоятельно в 1746 году.

В настоящее время лейденская банка представляет собой стеклянный сосуд, покрытый металлической фольгой внутри и снаружи. CAP служит средством хранения электричества, а какие конденсаторы лучше для звука будет зависеть от емкости, ведь чем больше этот показатель, тем больше электроэнергии он будет хранить. Емкость зависит от размера противоположных пластин, расстояния между пластинами и характера изолятора между ними.

Конденсаторы, используемые в усилителях звука, бывают нескольких типов, например, обычный CAP с металлической фольгой для обеих пластин и пропитанной бумагой между ними. Конденсаторы с металлизированной бумагой (MP), также называемые бумажно-масляными CAP и металлизированные бумажные однослойные конденсаторы (МБГО) для звука, которые используются в цепях переменного, постоянного и импульсного тока.

Позже майлар (полиэстер) и другие синтетические изоляторы стали более распространенными. В шестидесятые годы прошлого века металлический CAP с майларом стал очень популярным. Две сильные стороны этих устройств — меньший размер и тот факт, что они являются самовосстанавливающимися. Сегодня это лучшие конденсаторы для звука, они используются практически в каждом электронном устройстве. Из-за огромных объемов торговли и производства таких типов конденсаторов они довольно дешевы.

Другой тип CAP — электролитический со специальной конструкцией с преимущественно высокими и очень высокими значениями в диапазоне от 1 мкФ до нескольких десятков тысяч мкФ. Они в основном используются для развязки или фильтрации в блоке питания. Наиболее распространенными в конструкции усилителей являются металлизированные майларовые или полиэфирные конденсаторы (МКТ). В усилителях более высокого качества в основном используется металлизированный полипропилен (МКП).

Свойства

Из описания понятно, что для постоянного тока конденсатор является непреодолимым барьером, за исключением случаев пробоя диэлектрика. В таких электрических цепях радиоэлемент используется для накопления и сохранения электричества на его электродах. Изменение напряжения происходит лишь в случаях изменений параметров тока в цепи. Эти изменения могут считывать другие элементы схемы и реагировать на них.

В цепях синусоидального тока конденсатор ведёт себя подобно катушке индуктивности. Он пропускает переменный ток, но отсекает постоянную составляющую, а значит, может служить отличным фильтром. Такие радиоэлектронные элементы применяются в цепях обратной связи, входят в схемы колебательных контуров и т. п.

Ещё одно свойство состоит в том, что переменную емкость можно использовать для сдвига фаз. Существуют специальные пусковые конденсаторы (рис.5), применяемые для запусков трёхфазных электромоторов в однофазных электросетях.

Пусковой конденсатор с проводами
Рис. 5. Пусковой конденсатор с проводами

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Устройство детали

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Лейденские банки, соединённые параллельно

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Обозначение на схемах

Емкость

Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.

Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.

Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.

Удельная емкость

Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.

Плотность энергии

Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.

Номинальное напряжение

Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.

Полярность

К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.

Что будет, если перепутать полярность конденсатора? Обычно в этом случае приборы выходят из строя. Это происходит из-за химического разрушения диэлектрика, которое вызывает рост силы тока, вскипание электролита и, как следствие, вздутие корпуса и вероятный взрыв.

К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.

Принцип действия конденсатора

Для начала разберемся, зачем вообще нужен конденсатор. Представить современные электронные приборы от простейшего блока питания до сложнейших вычислительных систем без этого устройства сегодня просто невозможно.

Оно является своеобразным аккумулятором небольшой емкости, способным накапливать и моментально отдавать заряд в случае кратковременного отключения напряжения или его просадке. Существуют также конденсаторы, предназначенные для фильтрования частот, как низких, так и высоких, подавления помех, сглаживания скачков напряжения, повышения коэффициента мощности и пр.

Конденсаторы имеют два вывода-полюса – плюсовое (+) и минусовое (-). Они представляют собой металлические пластины, на которых скапливаются положительные и отрицательные заряды.

Между ними размещают диэлектрик (стекло, картон, дерево и пр.), не позволяющий замкнуть цепь. Часто для увеличения емкости полюса изготавливают не в виде пластин, а в форме спиралей или сфер.

Сокращенные обозначения

Танталовые конденсаторы

В стандартном исполнении выпускают постоянные (К) и подстроечные (КТ) конденсаторы. Переменные (КП) создают по индивидуальным заказам. Ниже приведены отдельные параметры по ГОСТу 13 453-68.

Материал диэлектрика:

  • Б – бумага;
  • МП – комбинация металла/ пленки;
  • С – слюда;
  • Э – электролит;
  • К – керамика.

По степени защиты от внешних воздействий различают герметичное (Г) исполнение и опрессованный корпус (О).

Конструкция:

  • М – монолит;
  • Б – бочонок;
  • Д – диск;
  • С – секционный вариант.

Рабочий режим (по току):

  • И – импульсный;
  • У – универсальный (импульсный, постоянный и переменный);
  • Ч – только постоянный;
  • П – переменный/постоянный.

Иные особенности:

  • У – конденсатор, рассчитанный на работу в диапазоне УКВ;
  • М – компактные габариты;
  • Т – обеспечивается сохранение технических параметров при повышении температуры;
  • В – изделие приспособлено для установки в сетях с высоким напряжением.

В стандартном обозначении указывают (по номеру позиции):

  1. вид конденсатора (К, КТ или КП);
  2. код по диэлектрику и основным параметрам (К10 керамика для напряжения до 1600 V);
  3. рабочий режим по току;
  4. производственная серия или другое технологическое обозначение.

Дополнительные сведения:

  • Выбирать изделия можно по комбинированной (цифровой и буквенной), цветовой маркировке;
  • На компактный корпус наносят сокращения (вместо 1000мкФ – 1000m);
  • Класс точности обозначают латинским шрифтом (U – это ±);
  • Аналогичным образом кодируют номинальное напряжение (Q-160V).

Виды конденсаторов

Итак, конденсатор служит для накопления электрического заряда с последующей его отдачей в цепь. Конденсаторы бывают полярные, неполярные и электролитические, другое название «оксидные».

Для подключения электродвигателей в сеть переменного тока, полярные конденсаторы использовать нельзя. Из-за быстрого разрушения диэлектрика внутри, произойдёт замыкание, и такие конденсаторы очень быстро выйдут из строя.

Этого не произойдёт, если подключить к двигателю неполярный конденсатор. Обкладки неполярных конденсаторов одинаково взаимодействуют, как с источником, так и с диэлектриком.

Электролитические конденсаторы имеют внутри вместо пластин тонкую оксидную плёнку. Зачастую именно их и используют для подключения электродвигателей низкой частоты, поскольку максимально возможная ёмкость электролитических конденсаторов составляет 100000 мкФ.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3). Свойства:

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру. Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Танталовые электролитические конденсаторы
Это вид электролитического конденсатора, в которых металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

Свойства:

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Ионисторы

Есть также  особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что  там есть золото. Сам принцип работы ионистора ценее, чем золото.  Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик)  тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!

Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а  также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!

ионистор
ионистор

Что такое конденсатор

большой ионистор
большой ионистор

В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).

Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами.  А исходя из закона Ома, чем меньше сопротивление проводника, тем большая сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно почти бесконечно.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда. Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.
Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Электролитические конденсаторы

В электролитических конденсаторах анодом служит металлическая пластина, диэлектриком – оксидная пленка, а катодом – твердый, жидкий или гелеобразный электролит. Наличие гелеобразного электролита делает устройство полярным, то есть ток через него может протекать только в одном направлении. Представители этого семейства – алюминиевые и танталовые конденсаторы.

Алюминиевые электролитические конденсаторы имеют емкость от 0,1 до нескольких тысяч мкФ. Обычно они применяются на звуковых частотах. Электрохимическая ячейка плотно упакована, что обеспечивает большую эффективную индуктивность, которая не позволяет использовать алюминиевые накопители на сверхвысоких частотах.

В танталовых конденсаторах катод изготавливается из диоксида марганца. Сочетание значительной площади поверхности анода и диэлектрических характеристик оксида тантала обеспечивает высокую удельную емкость (емкость в единице объема или массы диэлектрика). Это значит, что танталовые конденсаторы гораздо компактнее алюминиевых такой же емкости.

У танталовых конденсаторов есть свои недостатки. Устройства ранних поколений грешат отказами, возможны возгорания. Они могут произойти при подаче слишком высокого пускового тока, который меняет структурное состояние диэлектрика. Дело в том, что оксид тантала в аморфном состоянии является хорошим диэлектриком. При подаче большого пускового тока оксид тантала из аморфного состояния переходит в кристаллическое и превращается в проводник. Кристаллический оксид тантала еще больше увеличивает силу тока, что и приводит к возгоранию. Современные танталовые конденсаторы производятся по передовым технологиям и практически не дают отказов, не вздуваются, не возгораются.

ELNA Silmic II

Лидер этого рейтинга электролитического вида – это ELNA Silmic II. Недорогая модель, которая обладает отменными техническими показателями способными ощутимо улучшить конечный звук. Отлично подойдет для воспроизведения аудиопотока в высоком качестве.

Выпускается в корпусе из алюминия, благодаря которому внутренняя часть хорошо защищена. Внешний вид достаточно прост, не объемные параметры позволяют использовать изделие в сочинении с разнообразной техникой. В изготовлении применяются – волокно из шелка и нить (бескислородная). Сочетание этих материалов дает потрясающий результат – минимум изменения звука на всех частотах.

ELNA Silmic IIДостоинства:

  • высокая надежность сборки;
  • не высокая цена;
  • доступность в магазинах;
  • возможность работы во всех частотах.

Недостатки:

  • максимальное рабочее напряжение не превышает 100 В.

JJ Electronic TE030

Способности этой модели отлично подходят для того, чтобы звук аудиопотока стал гораздо чище. Применение этой модели хорошо сочетается с устройствами Hi-Fi, и сверх этого может выступать как устройство способное фильтровать звучание. Хотя это не сильно дорогие варианты, практика показывает, что их можно применять со специализированным оборудованием. Устройства Electronic TE030 очень износостойкие и качественно выполнены, поставив это устройство можно лишний раз не думать о возможности утечки тока.

Показатели изделия: максимально допустимое напряжение не должно превышать 385 В, внушительная емкость 47 – 800 мкФ! Таким показателям могут позавидовать даже очень дорогие модели этого вида.

JJ Electronic TE030Достоинства:

  • адекватная цена;
  • материалы изготовления на высоком уровне;
  • огромная емкость;
  • применяется в специализированной технике.

Недостатки:

  • чаще продается исключительно в профессиональных магазинах.

Mundorf E-CapAC Raw

Почетное третье место — у Mundorf E-CapAC Raw, которому по плечу поднять мощность на хороший уровень, но, к сожалению, он не в состоянии также хорошо справится с итоговым звучанием. Может устроить тех меломанов, для которых на первом месте надежность и не быстрая разрядка устройства.

Технические показатели этой модели на среднем уровне, но не стоит забывать и о невысокой конечной цене: неплохая емкость 22 мкФ и напряжение не превышает 100 В. Обычный внешний облик изделия, позволяет ему сочетаться с разными типами устройств.

Mundorf E-CapAC RawДостоинства:

  • не высокая цена;
  • хорошая емкость;
  • продолжительно держит заряд.

Недостатки:

  • способно выдержать сравнительно не высокое напряжение (100 В).

Пленочные и металлопленочные конденсаторы

Пленочные конденсаторы имеют диэлектрический слой из полимерной пленки, расположенный между слоями металлофольги.

Такие устройства имеют небольшую емкость (от 100 пФ до нескольких мкФ), но могут работать при высоких напряжениях – до 1000 В.

Существует целое семейство пленочных конденсаторов, но для всех видов характерны небольшие емкость и индуктивность. Благодаря малой индуктивности, эти приборы используются в высокочастотных схемах.

Основные различия между конденсаторами с разными типами пленок:

  • Конденсаторы с диэлектриком в виде полипропиленовой пленки применяются в цепях, в которых предъявляются высокие требования к температурной и частотной стабильности. Они подходят для систем питания, подавления ЭМП.
  • Конденсаторы с диэлектриком в виде полиэстеровой пленки обладают низкой стоимостью и способны выдерживать высокие температуры при пайке. Частотная стабильность, по сравнению с полипропиленовыми видами, ниже.
  • Конденсаторы с диэлектриком из поликарбонатной и полистиреновой пленки, которые использовались в старых схемах, сегодня уже неактуальны.

JB JFGC

Открывает тройку пленочных лидеров JB JFGC, он способен выдать прекрасное звучание и при этом сильно не ударит по бюджету. Отличительная особенность модели соединение пленки из полипропилена и полиэстера с участием смолы. Эта комбинированная модель работает благодаря сочетанию переменного и постоянного электричества, и прекрасно гармонировать с фильтрами в акустической системе.

Предельная температура, которую выдерживает эта модель, составляет 100 градусов. Напряжение колеблется в пределах 1000 В (250-1250). К сожалению, емкостные показатели не велики, не более 35 мкФ. Диаметр не велик 0,8 мм, размеры изделия небольшие, а продуманный дизайн помогает изделию без труда стать дополнением каждого стиля.

JB JFGCДостоинства:

  • привлекательная цена;
  • дизайнерский вид;
  • качество звучания на высоком уровне;
  • широкая линейка наминала.

Недостатки:

  • не достаточная детализация звучания.

MKP Jantzen Cross Cap

Очередная модель пленочного типа — MKP Jantzen Cross Cap. Выделяется на фоне конкурентов превосходным качеством звукопередачи и отменными характеристиками. Использование этого аппарата позволит пользователю, насладится звуком без всяких посторонних искажений.

Материалы покрытия отлично подобраны: полипропиленовая пленка, а наверху покрытие из смеси цинка с эпоксидом. Пленочное устройство функционирует в пределах 0,1-300 мкФ, устойчив к напряжению, не превышающему 400 В, так же он не габаритных размеров – это отличные показатели изделия, которое отлично подойдет потребителю. Все по формату 2 в 1 (цена и сверх качество).

MKP Jantzen Cross CapДостоинства:

  • электроемкий;
  • конструкция на совесть;
  • формат 2 в 1.

Недостатки:

  • особенности корпуса – быстро теряет внешний вид.

Visaton MKP 3.3/250

Почетное 3 место занимает изделие фирмы Visaton. Цена уже на порядок выше двух лидеров топа и класс уже ниже. Применяется в качестве дополнения к фильтрам АС-класса High-End.

Преимущественной особенностью этой модели является пониженная вероятность потери тока в процессе интенсивной работы. Visaton MKP 3.3/250 выдерживает повышенное напряжение постоянного тока 250 В, этот факт добавлен производителями в название устройства. Внешний вид изделия, хотя и не может похвастаться эксклюзивным дизайном, зато маленькие габариты и правильно, 30 мм выверенное технически расстояние от одного вывода до другого дает возможность использовать его в различных звуковых установках. Существенным недостатком, который может огорчить не высокое качество смонтированных деталей.

Visaton MKP 3.3/250Достоинства:

  • продается практически в любом магазине;
  • сочетается с изделиями класса АС;
  • пониженная вероятность потери тока.

Недостатки:

  • недостаточно высокое качество сборки.

Керамические конденсаторы

В керамических конденсаторах в качестве диэлектрика используются керамические пластины.

Керамические конденсаторы отличаются небольшой емкостью – от одного пФ до нескольких десятков мкФ.

Керамика имеет пьезоэлектрический эффект (способность диэлектрика поляризоваться под воздействием механических усилий), поэтому некоторые виды этих конденсаторов обладают микрофонным эффектом. Это нежелательное явление, при котором часть электроцепи воспринимает вибрации, как микрофон, что становится причиной помех.

Бумажные и металлобумажные конденсаторы

В качестве диэлектрика в этих конденсаторах используется бумага, часто промасленная. Устройства с промасленной бумагой отличаются большими размерами. Модели с непромасленной бумагой более компактны, но они имеют существенный недостаток – увеличивают энергопотери под воздействием влаги даже в герметичной упаковке. В последнее время эти детали используются редко.

Jensen NOS 600 V 0.071 uF 1

Благодаря Jensen, получаемый звук достойного качества, он будет без помех на любой аппаратуре. Устройства этого производителя отличает длительный срок эксплуатации и надежность. Отличительная особенность отсутствие утечек. Дизайн модели 600 V 0.071 uF 1 не уникален (вытянутая форма и небольшие размеры), но радует палитра цветов – синий и цвет золота.

Как и указано в названии может выдержать напряжение, которое будет в районе 600 В. Емкостные показатели не велики – не выше 10 мкФ. Материалы, которые фирма Jensen NOS применила в изготовлении – это фольга из алюминия и бумага специального состава.

Jensen NOS 600 V 0.071 uF 1Достоинства:

  • достойное качество;
  • не высокая цена;
  • многофункциональная модель;
  • на выходе воспроизводиться звучание на хорошем уровне.

Недостатки:

  • небольшая емкость.

Duelund Alexander by 900 V 0.68 uF copper

Еще одна строка рейтинга по праву принадлежит марке Duelund Alexander. Очевидный плюс при использовании этой модели отличное звуковоспроизведение на разных типах техники. В производстве применяется фольга из меди с промасленной диэлектрической бумагой.

Особенность модели применение, без каких-либо добавок, посеребренной меди (бескислородная) которая размещается на выводах. Тот случай, когда высокая цена оправдана, благодаря возможности использования на абсолютно разных устройствах.

Характеристикам этой модели можно только позавидовать: способность справляться с напряжением до 900 В, линейка выбора емкости от 0,1 вплоть до 1 мкФ.

Duelund Alexander by 900 V 0.68 uF copperДостоинства:

  • превосходное качество воспроизводимого звука;
  • применение для разных видов техники;
  • отменные характеристики.

Недостатки:

  • цена выше среднего.

Jupiter Copper Foil Paper&Wax

Главное преимущество подобных конденсаторов – высокое качество. Поэтому изделие подойдет для установки в аудиотехнике премиального сегмента. В отличие от предыдущих вариантов, здесь применяется медная фольга, что гарантирует наиболее точную передачу звукового сигнала. Минимальная и максимальная емкость – 0.001 нФ, 12 мкФ, соответственно.

Средняя цена – 3 800 рублей.

Jupiter Copper Foil Paper&Wax

Достоинства:

  • При помощи этого элемента получается чистый звук;
  • Медная фольга;
  • Надежность;
  • Стабильная работа;
  • Емкость.

Недостатки:

  • Не выявлено.

Audio Note NOS AN 630V 0.01 uF Puretinfoil

Последняя модель рейтинга с экстравагантным обликом от фирмы Audio Note. Цена модели выше среднего уровня, но и получаемый звук достаточно хорош. Достоинство рассматриваемой модели возможность применения как разделительного элемента, так и в качестве фильтрующего.

Особенность звучания заключается в том, что изделие способно поразить не просто чистым звуком, но и хорошо различимыми высокими звуками. Технические показатели модели: способно выдержать напряжение не более 630 В, варианты емкости в пределах 0,001-0,1 мкФ.

Audio Note NOS AN 630V 0.01 uF PuretinfoilДостоинства:

  • отличное качество звукопередачи;
  • применяются надежные материалы;
  • широкий сектор применения.

Недостатки:

  • не бюджетный вариант для покупки;
  • низкая емкость.

Паразитные параметры

Отдельные виды параметров являются паразитными, которые стараются снизить при конструировании и изготовлении. Их описание приведено ниже.

Электрическое сопротивление изоляции диэлектрика конденсатора, поверхностные утечки Rd и саморазряд

Данный параметр зависит от свойств диэлектрика и материала корпуса. Он показывает, насколько уменьшается заряд с течением времени у элемента, не включенного во внешнюю цепь. Утечка происходит в результате неидеальности диэлектрика и по его поверхности.

Для некоторых конденсаторов в характеристиках указывается постоянная времени Т, которая показывает время, в течении которого напряжение на обкладках уменьшится в е (2.71) раз. Численно постоянная времени равняется произведению сопротивления утечки на емкость.

Эквивалентное последовательное сопротивление (Rs)

Эквивалентное последовательное сопротивление ЭПС (в англоязычной литературе ERS) слагается из сопротивления материала обкладок и выводов. К нему также может добавляться поверхностная утечка диэлектрика.

По своей сути, ЭПС представляет собой сопротивление, соединенное последовательно с идеальным конденсатором. Такая цепь в некоторых случаях может влиять на фазочастотные характеристики. ЭПС обязательно должно учитываться при проектировании импульсных источников питания и контуров авторегулирования.

Электролитические конденсаторы имеют особенность, когда из-за наличия внутри паров электролита, воздействующих на выводы, величина ЭПС со временем увеличивается.

Эквивалентная последовательная индуктивность (Li)

Поскольку выводы обкладок и сами обкладки металлические, то они имеют некоторую индуктивность. Таким образом, конденсатор представляет собой резонансный контур, что может оказать влияние на работу схемы в определенном диапазоне частот. Наименьшую индуктивность имеют СМД компоненты ввиду отсутствия у них проволочных выводов.

Тангенс угла диэлектрических потерь

Отношение активной мощности, передаваемой через конденсатор, к реактивной, называется тангенсом угла диэлектрических потерь. Данная величина зависит от потерь в диэлектрике и вызывает сдвиг фазы между напряжением на обкладке и током. Тангенс угла потерь важен при работе на высоких частотах.

Температурный коэффициент ёмкости (ТКЕ)

ТКЕ означает изменение емкости при колебаниях температуры. ТКЕ может быть как положительным, так и отрицательным, в зависимости от того, как ведет себя емкость при изменениях температуры.

Для фильтрующих и резонансных цепей для компенсации температурного дрейфа в одной цепи используют элементы с разным ТКЕ, поэтому многие производители группируют выпускаемые элементы по величине и знаку коэффициента.

Диэлектрическая абсорбция

Данный эффект еще называют эффектом памяти. Проявляется он в том, что при разряде конденсатора через низкоомную нагрузку через некоторое время на обкладках возникает небольшое напряжение.

Величина диэлектрической абсорбции зависит от материалов, из которых изготовлен элемент. Она минимальна для тефлона и полистирола и максимальна для танталовых конденсаторов. Важно учитывать эффект при работе с прецизионными устройствами, особенно интегрирующими и дифференцирующими цепями.

Самовосстановление

Свойством самовосстановления после электрического пробоя обладают электролитические бумажные и пленочные конденсаторы. Такие типы конденсаторов и их разновидности нашли применение в цепях, обеспечивающих запуск электродвигателей, в особенности, если трехфазный асинхронный электродвигатель включается в однофазную сеть. Свойство восстановления широко используется в силовой технике.

Паразитный пьезоэффект

Так называемый «микрофонный эффект» выражается в том, что при воздействии механических нагрузок, в том числе акустических колебаний, керамический диэлектрик в некоторых типах устройств проявляет свойства пьезоэлектрика и начинает генерировать помехи.

Как правильно подобрать конденсаторы

Теоретически предполагается осуществлять расчет необходимой емкости путем деления силы тока на напряжение и полученную величину умножить на коэффициент. Для разного типа соединений обмоток коэффициент составляет:

  • звездой – 2800;
  • треугольником — 4800.

Недостатком этого метода является то, что не всегда на электродвигателе сохранилась табличка с данными. Невозможно точно знать коэффициент мощности и мощность двигателя, а следовательно и силу тока. К тому же на силу тока могут действовать такие факторы как отклонения напряжения в сети и величина нагрузки на двигатель.

Мощность электродвигателя, кВт 0,4 0,6 0,8 1,1 1,5 2,2
Ёмкость конденсатора C2 в номинальном режиме, мкФ 40 60 80 100 150 230
Ёмкость конденсатора C2 в недогруженном режиме, мкФ 25 40 60 80 130 200
Ёмкость пускового конденсатора C1 в номинальном режиме, мкФ 80 120 160 200 250 300
Ёмкость конденсатора C1 в недогруженном режиме, мкФ 20 35 45 60 80 100

Поэтому следует применять упрощенный расчет емкости рабочих конденсаторов. Просто учесть, что на каждые 100 ватт мощности необходимо 7 микрофарад емкости. Удобнее использовать несколько параллельно соединенных конденсаторов малой, желательно одинаковой емкости, чем один большой. Просто суммируя емкость собранных конденсаторов, можно легко определить и подобрать оптимальное значение. Для начала лучше процентов на десять занизить суммарную емкость.

Если двигатель легко запускается и мощности его достаточно для работы, то все подобрано правильно. Если нет – нужно еще подсоединять конденсаторы, пока двигатель не достигнет оптимальной мощности.

СПРАВКА. При подключении трехфазного асинхронного двигателя с короткозамкнутым ротором в однофазную сеть теряется не менее трети его мощности.

Следует помнить, что много не всегда хорошо, и при превышении оптимальной емкости рабочих конденсаторов двигатель будет перегреваться. Перегрев может привести к сгоранию обмоток и выходу электродвигателя из строя.

ВАЖНО! Конденсаторы следует соединять между собой параллельно.

Желательно выбирать конденсаторы с рабочим напряжением не менее 450 вольт. Самыми распространенными являются так называемые бумажные конденсаторы, с буквой Б в наименовании. В настоящее время выпускаются и специализированные, так называемые моторные конденсаторы, например К78-98.

ВНИМАНИЕ! Желательно выбирать конденсаторы для переменного тока. Использование иных тоже возможно, но связано с усложнением схемы и возможными нежелательными последствиями.

В случае, если запуск двигателя осуществляется под нагрузкой и происходит тяжело, необходим еще и пусковой конденсатор. Он включается параллельно рабочему на непродолжительное время пуска электродвигателя. Его емкость должна быть равной или не более чем в два раза превышать емкость рабочего.

Как подобрать конденсатор для трехфазного электродвигателя

Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.

Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:

  • k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
  • Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
  • U сети – напряжение питания сети, т.е. 220 вольт.

Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.

Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.

В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.

Как подобрать конденсатор для однофазного электродвигателя

Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.

Подбираем конденсатор для компьютера

Очень часто из-за неработающего конденсатора может не включаться домашний компьютер. Сюда же можно отнести внезапные артефакты и глюки, например, задержка в работе мышки, снижение производительности, синий экран смерти. В этом случае стоит разобрать корпус ПК и изучить конденсаторы на предмет вздутия.

Подборка конденсатор для компьютера не должна составить особых проблем, ведь его характеристики четко указаны на корпусе изделия. Очень важно соблюдать полярность при пайке, иначе конденсатор при первом же включении просто сгорит. Овладеть навыками пайки, на самом деле, не так уж и сложно. Главное – помнить, что небольшие электронные компоненты не стоит через меру перегревать, в том числе конденсаторы.

Таким образом, чтобы правильно подобрать конденсатор, необходимо знать лишь ряд электрических параметров, как его напряжение, тип тока и емкость. Не так уж и сложно также визуально определить неработающий электролитический конденсатор по его вздутию и повреждению корпуса. Чтобы заменить неработающий компонент на электронной плате, также придется овладеть навыками пайки.

Калькулятор расчета емкости рабочего и пускового конденсаторов

При подключении асинхронного электродвигателя в однофазную сеть 220/230 В необходимо обеспечить сдвиг фаз на обмотках статора, чтобы сделать имитацию вращающегося магнитного поля (ВМП), которое заставляет вращаться вал ротора двигателя при подключению его в «родные» трехфазные сети переменного тока. Известная многим, кто знаком с электротехникой, способность конденсатора давать электрическому току «фору» на π/2=90° по сравнению с напряжением, оказывает хорошую услугу, так как это создает необходимый момент, заставляющий вращаться ротор в уже «не родных» сетях.


Калькулятор расчета рабочего и пускового конденсаторов

Но конденсатор для этих целей необходимо подбирать, причем нужно делать с высокой точностью. Именно поэтому читателям нашего портала предоставляется в абсолютное безвозмездное пользование калькулятор расчета емкости рабочего и пускового конденсатора. После калькулятора будут даны необходимые разъяснения по всем его пунктам.

Калькулятор расчета емкости рабочего и пускового конденсаторов

Для расчета использовались следующие зависимости:

Способ подключения обмоток и схема подключения рабочего и пускового конденсаторовФормула

Подключение «Звездой» Емкость рабочего конденсатора – Ср
Cр=2800*I/U; I=P/(√3*U*η*cosϕ); Cр=2800*P/(/(√3*U²*η*cosϕ).
Подключение «Треугольником» Емкость рабочего конденсатора — Cp
Cр=4800*P/(/(√3*U²*η*cosϕ).
Емкость пускового конденсатора при любом способе подключения Cп=2,5*Cр
Расшифровка обозначений в формулах: Cр – емкость рабочего конденсатора в микрофарадах (мкф); Cп – емкость пускового конденсатора в мкф; I – ток в амперах (А); U – напряжение сети в вольтах (В); η – КПД двигателя, выраженный в процентах, деленных на 100; cosϕ – коэффициент мощности.

Полученные из калькулятора данные можно использовать для подбора конденсаторов, но именно таких номиналов, как будет рассчитано, их вряд ли можно будет найти. Только в редких исключениях могут быть совпадения. Правила подбора такие:

  • Если есть «точное попадание» в номинал емкости, который существует у нужной серии конденсаторов, то можно выбирать именно такой.
  • Если нет «попадания», то выбирают емкость, стоящую ниже по ряду номиналов. Выше не рекомендуется, особенно для рабочих конденсаторов, так как это может привести к ненужному возрастанию рабочих токов и перегреву обмоток, которое может привести к межвитковому замыканию.
  • По напряжению конденсаторы выбираются номиналом не менее, чем в 1,5 раза больше, чем напряжение в сети, так как в момент пуска напряжение на выводах конденсаторов всегда повышенное. Для однофазного напряжения в 220 В рабочее напряжение конденсатора должно быть не менее 360 В, но опытные электрики всегда советуют использовать 400 или 450 В, так как запас, как известно, «карман не тянет».

Приведем таблицу с номиналами конденсаторов рабочих и пусковых. В качестве примера приведены конденсаторы серий CBB60 и CBB65. Это полипропиленовые пленочные конденсаторы, которые наиболее часто применяют в схемах подключения асинхронных двигателей. Серия CBB65 отличается от CBB60, тем, что они помещены в металлический корпус.

В качестве пусковых применяют электролитические неполярные конденсаторы CD60. Их не рекомендуются применять в качестве рабочих так как продолжительное время их работы делает их жизнь менее продолжительной.. В принципе, для пуска подходят и CBB60, и CBB65, но они имеют при равных емкостях более объемные габариты, чем CD60. В таблице приведем примеры только тех конденсаторов, которые рекомендованы к использованию в схемах подключения электродвигателей.

Полипропиленовые пленочные конденсаторы CBB60 (российский аналог К78-17) и CBB65Электролитические неполярные конденсаторы CD60

Изображение
Номинальное рабочее напряжение, В 400; 450; 630 В 220—275; 300; 450 В
Емкость, мкф 1,5; 2,0;2,5; 3,0; 3,5; 4,0; 5,0; 6,0; 7,0; 8,0; 10; 12; 14; 15; 16; 20; 25; 30; 35; 40; 45; 50; 60; 65; 70; 75; 80; 85; 90; 100; 120; 150 мкф 5,0; 10; 15; 20; 25; 50; 75; 100; 150; 200; 250; 300; 350; 400; 450; 500; 600; 700; 800; 1000; 1200; 1500 мкф

Для того, чтобы «набрать» нужную емкость, можно использовать два и более конденсатора, но при разном соединении результирующая емкость будет отличаться. При параллельном соединении она будет складываться, а при последовательном — емкость будет меньше любого из конденсаторов. Тем не менее такое соединение иногда используют для того, чтобы, соединив два конденсатора на меньшее рабочее напряжение, получить конденсатор, у которого рабочее напряжение будет суммой двух соединяемых. Например, соединив два конденсатора на 150 мкф и 250 В последовательно, получим результирующую емкость 75 мкф и рабочее напряжение 500 В.


Последовательное и параллельное соединение конденсаторов

Для того чтобы рассчитать емкость двух последовательно соединенных конденсаторов, читателям предоставляется простой калькулятор, где надо просто выбрать два конденсатора из ряда существующих номиналов.

Калькулятор расчета результирующей емкости двух последовательно соединенных конденсаторов

Возможно ли самому подключить трехфазный асинхронный двигатель в сеть 220 В?


Обычно эту операцию доверяют только электрикам, имеющим практический опыт. Однако, подключить двигатель можно и самому. Это доказывает статья нашего портала: «Как подключить трехфазный двигатель в сеть 220 В».

Специфика схем с конденсаторами

Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:

  • включение в «треугольник»;
  • подсоединение в «звезду».

К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.

Схемы подсоединения к линии 380 В

В применении емкостных элементов, при подключении 3-х фазного мотора к сети 380 вольт, нет необходимости.

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Включение мотора в трёхфазную сеть

Схемы включения в однофазную сеть

При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:

  • от рабочей катушки;
  • от дополнительной;
  • общий вывод для обеих обмоток.

Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Схема для запуска однофазного двигателя

Тип сборки «Треугольник»

Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Включение мотора по соединению «треугольник»

Тип сборки «Звезда»

Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.

Как выбрать конденсаторы для подключения однофазного и трехфазного электродвигателя в сеть 220 в
Подключение «звездой»

Как проверить работоспособность конденсатора

Для проверки конденсатора на работоспособность используют мультиметр. Прежде чем проверить накопитель, необходимо определить, какой именно прибор находится в схеме – полярный (электролитический) или неполярный.

Проверка полярного конденсатора

При проверке полярного конденсатора необходимо соблюдать правильную полярность подключения щупов: плюсовой должен быть прижат к плюсовой ножке, минусовой – к минусу. Если вы перепутаете полярность, конденсатор выйдет из строя.

После выпайки детали ее кладут на свободное пространство. Мультиметр включают в режим измерения сопротивления («прозвонки»).

Щупами дотрагиваются до выводов прибора с соблюдением полярности. Правильная ситуация, когда на дисплее появляется первое значение, которое начинает постепенно расти. Максимальное значение, которое должно быть достигнуто для исправного устройства, – 1. Если вы только прикоснулись щупами к выводам, а на экране появилась сразу цифра 1, значит, прибор неисправен. Появление на экране «0» означает, что внутри детали произошло короткое замыкание.

Проверка неполярного конденсатора

В этом случае проверка предельно простая. Диапазон измерений выставляют на отметку 2 МОм. Щупы присоединяют к выводам конденсатора в любом порядке. Полученное значение должно превышать двойку. Если на дисплее высвечивается значение менее 2 МОм, то деталь неисправна.

Признаки неисправности конденсатора

Перед тем, как выбрать конденсатор, следует выпаять вышедшее из строя устройство и определить его параметры. Признаком нарушения работоспособности этого элемента могут служить:

  • «вздутие», деформация крышки;
  • снижение емкости и комплексного электросопротивления (импеданса): для определения их значения используется оммометр; его щупы прикладываются к одному из предварительно отпаянных выводов конденсатора; при обрыве стрелка прибора будет отклоняться в сторону «бесконечности»; на неисправность конденсатора указывает также снижение показателей его емкости;

Косвенными признаками выхода из строя одного или нескольких конденсаторов являются нестабильность работы компьютера, его периодическое «зависание», перезагрузка, увеличение потребляемой мощности одного из узлов или полный выход из строя ПК.

Важно! Затягивать с заменой конденсатора, задействованного в цепи электропитания важнейших элементов, к примеру, процессора, крайне нежелательно. Это может привести к его выходу из строя.

Основные причины «вздутия» конденсатора

Можно правильно выбрать конденсатор, впаять его, и через пару дней обнаружить, что он вновь вышел из строя. Основной причиной быстрой поломки этих элементов является перегрев при:

  • недостаточной вентиляции корпуса и его перегреве свыше +45°С;
  • установке блока питания недостаточной мощности; она должна быть на 10-15% больше, чем та, которую компьютер использует в момент высшей производительности; в противном случае в цепи возникают токовые нагрузки и, как следствие, перегрев элементов.

Выход из строя конденсатора возможен также при:

  • несоблюдении полярности электролитических элементов при припайке;
  • механических повреждениях устройства.

Самостоятельная замена конденсатора

Итак, мы разобрались, как выбрать конденсатор. Осталось его впаять. Для этого следует:

  1. Обработать обе ножки вздувшегося конденсатора флюсом.
  2. Поочередно прогреть их паяльником до расплавления.
  3. Удалить заменяемую деталь.
  4. Обработать открывшиеся отверстия отсосом припоя до полной очистки.
  5. Вставить новый конденсатор (в электролитических обязательно соблюдая полярность).
  6. Обрезать излишнюю длину ножек таким образом, чтобы элемент выступал над поверхностью на пару миллиметров.
  7. Обработать их флюсом и припаять.
  8. Тщательно очистить место припоя ваткой со спиртом.

Таким образом, заменить неисправный конденсатор можно в течение нескольких минут. В том случае, если устройство выбрано правильно и в процессе эксплуатации не перегревается, оно прослужит долго.

Как выбрать

В данный момент на рынке происходить смена лидера, вместо тороидальных громоздких приходят устройства импульсного типа. Для выбора наилучшего конденсатора любителям качественной музыки необходимо отталкиваться от важных критериев:

  • тип;
  • компания изготовитель;
  • импеданс;
  • мощность всей системы;
  • цепи напряжения;
  • цена изделия.

Важно учитывать тот факт, что при необходимости или изменившихся потребностях под каждую модель можно подобрать сопоставимые заменители, они могут по техническим качествам и не проигрывать именитым моделям, а наоборот ни в чем им не уступать и стоить на порядок дешевле.

Выбирая устройство без посторонней помощи, необходимо тщательно изучить весь предлагаемый на рынке ассортимент сравнивая технические показатели и найти побольше отзывов о моделях. Благодаря такому детальному и скрупулезному анализу можно лучше разобраться в типах устройств, которые можно устанавливать на соответствующую аудио аппаратуру.

Лучшим выбором будет два типа конденсаторов – это бумажный и пленочный. Отличительной чертой их будет хорошее качество и устойчивая к износу конструкция, в этом они сильно превосходят электролитические. Понятно, что модели от популярных фирм стоят дороже, но кто захочет постоянно заменять неисправные детали вместо наслаждения чистым звуком? Успехов в покупке!

Источники
  • https://www.szemo.ru/press-tsentr/article/kak-vybrat-kondensator-dlya-elektrodvigatelya-/
  • https://FB.ru/article/451360/kakie-kondensatoryi-luchshe-dlya-zvuka-vidyi-klassifikatsiya-i-osobennosti-zvuchaniya
  • https://www.asutpp.ru/chto-takoe-kondensator.html
  • https://MasterpoToku.ru/full/kondensator-dla-elektrodvigatela-kakoj-vybrat-obzor-lucsih-puskovyh-kondensatorov-smotrite-zdes.html
  • https://www.RadioElementy.ru/articles/chto-takoe-kondensator-dlya-chego-nuzhen/
  • https://pclegko.ru/komplektujushhie/kak-vybrat-kondensator.html
  • https://amperof.ru/sovety-elektrika/kak-podobrat-kondensator.html
  • https://avtika.ru/kak-vybrat-kondensatory-dlya-dvigatelya-s-380-na-220/
  • https://ElectroInfo.net/kondensatory/kondensator-prostymi-slovami-o-slozhnom.html
  • https://www.RusElectronic.com/kondjensatory/
  • https://vyborok.com/rejting-luchshih-kondensatorov-dlya-zvuka/
  • https://yanashla.com/luchshie-kondensatory-dlya-zvuka/
  • https://amperof.ru/elektropribory/vidy-kondensatorov.html
  • https://sovetclub.ru/kak-podobrat-kondensator

Понравилась статья? Поделиться с друзьями: